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Single cell ATAC-seq and single cell RNA-seq data are available at Gene Expression Omnibus 

repository under the accession numbers GSE242324 and GSE242330. 

 

 

Key Points 

1/ Our results illustrate a complex and dynamic pattern of epigenetic and transcriptomic modifications 

in early PC genesis. 

 

2/ Preplasmablasts already undergo epigenetic remodeling related to mature PC together with UPR 

priming through mTORC1 pathway activation. 

 

Abstract 

Plasma cells (PC) are highly specialized cells representing the end stage of B cell differentiation. We 

have shown that PC differentiation can be reproduced in vitro using elaborate culture systems. The 

molecular changes occurring during PC differentiation are recapitulated in this in vitro differentiation 

model. However, a major challenge exists to decipher the spatiotemporal epigenetic and 

transcriptional programs that drives the early stages of PC differentiation. We combined single cell 

(sc) RNA-seq and single cell ATAC-seq to decipher the trajectories involved in PC differentiation. 

ScRNA-seq experiments revealed a strong heterogeneity of the preplasmablastic and plasmablastic 

stages. Among genes that were commonly identified using scATAC-seq and scRNA-seq, we 

identified several transcription factors with significant stage specific potential importance in PC 

differentiation. Interestingly, differentially accessible peaks characterizing the preplasmablastic stage 

were enriched in motifs of BATF3, FOS and BATF, belonging to the AP-1 transcription factor family, 

that may represent key transcriptional nodes involved in PCD. Integration of transcriptomic and 

epigenetic data at the single cell level revealed that a population of preplasmablasts already undergone 

epigenetic remodeling related to PC profile together with UPR activation and are committed to 

differentiate in PC. These results and the supporting data generated with our in vitro PC differentiation 

model provide a unique resource for the identification of molecular circuits that are crucial for early 

and mature plasma cell maturation and biological functions. These data thus provide critical insights 

into epigenetic- and transcriptional-mediated reprogramming events that sustain PC differentiation. 
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Introduction 

Plasma cells (PC) are highly specialized cells representing the end stage of B cell differentiation. They 

play an important role in humoral immunity1. On the transcriptional level, the differentiation of B cells 

into PCs is associated with substantial and coordinated changes 2–5. 

Several in vitro models of human B to PC differentiation (PCD) were reported6–11. These systems 

could be used for functional interrogation in human cells related to the different stages of B to PC 

differentiation and are suited to high-throughput molecular characterization and experiments2,3,12–14. 

We have shown that PC generation can be modeled using multi-step culture systems where various 

combinations of activation molecules and cytokines are subsequently applied in order to reproduce the 

sequential cell differentiation occurring in the different organs/tissues in vivo. In these model, memory 

B cells (MBCs) differentiate into pre-plasmablasts (prePBs), plasmablasts (PBs), early PCs and, 

finally, into long-lived PCs (LLPCs), which may survive and produce continuously high amounts of 

immunoglobulins (Igs) for months in vitro8. The phenotype of in vitro-generated PBs is similar to the 

phenotype of the few PBs detected in the peripheral blood6–8. Moreover, the molecular events 

occurring during differentiation of B cells into PCs are recapitulated in these in vitro differentiation 

models2,6,8,15.  

Recently, we used next-generation sequencing technology to generate a comprehensive transcriptome 

database encompassing human in vitro PCD. Our results reveal 8419 differentially expressed genes 

classified into four temporal gene expression patterns2
. Additionally, our analysis revealed numerous 

novel transcriptional regulators and helicases (BATF2, BHLHA15/MIST1, EZH2, WHSC1/MMSET, 

BLM and MYB) with consistent stage-specific overexpression and potential importance in PCD. 

Furthermore, our analysis revealed the upregulation of epigenetic factors at preplasmablast (PrePB) 

stage, a critical step during which cells actively proliferate and start secreting immunoglobulins. 

Finally, we have experimentally validated a role of for the BLM helicase and the histone 

methytransferase EZH2 in regulating cell survival, proliferation and maturation in PCD16,17. However, 

a major challenge exists to decipher the spatiotemporal epigenetic and transcriptional programs that 

drive the early stages of PCD18,19.  

In this study, we combined single cell RNA-seq and single cell ATAC-seq to decipher the trajectories 

involved in PCD. Our analyses reveal considerable transcriptional and epigenetic heterogeneity during 

the preplasmablastic stage of human PCD. Epigenetic analysis of the different stages suggests that 

BATF3 target genes may represent a key transcriptional node involved in PCD. Integration of 

transcriptome and epigenetic data at the single cell level showed that some prePBs already had an 

epigenetic profile similar to that of PCs in association with ER priming.  
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Materials and methods 

Cell cultures  

Peripheral blood cells from healthy donors were purchased from the French Blood Center (Toulouse, 

France) and CD19+CD27+ MBCs were purified as described6. From purified peripheral blood MBCs, 

prePB, PB, and PCs were generated using a three-step in vitro model as reported6,7. Standard culture 

conditions comprised 21% O2, 5% CO2, and 37°C and cells were cultured in Iscove’s modified 

Dulbecco medium (Invitrogen, Waltham, USA) supplemented with 10% fetal bovine serum (Eurobio, 

Les Ulis, France). MBCs (1.5x105cells/ml) were doubly activated for 4 days by CpG 

oligodeoxynucleotide and CD40 ligand using a cocktail comprising 10µg/ml of phosphorothioate CpG 

oligodeoxynucleotide 2006 (Sigma-Aldrich, Saint-Louis, USA), 50ng/ml of histidine tagged sCD40L 

(R&D systems, Minneapolis, USA) and 5µg/ml of anti-poly-histidine mAb (R&D systems) with IL-2 

(400U/ml) (R&D systems), IL-10 (50ng/ml) (R&D systems) and IL-21 (100ng/ml) (Peprotech, 

Cranbury, USA) cytokines in six-well culture plates. PBs were generated from prePBs 

(2.5x105cells/ml) by removing activating molecules and changing cytokine cocktail composed of IL-2 

(400U/ml), IL-6 (50ng/ml) (Peprotech), IL-10 (50ng/ml) and IL-15 (10ng/ml) (Peprotech). Finally, 

PBs (5.0x105cells/ml) were differentiated into PCs adding IL-6 (50ng/ml), IL-15 (10ng/ml) and IFN- 

(500U/ml) (R&D systems).  

 

Flow cytometry and cell sorting 

PrePBs, PBs and PCs were respectively purified at day (D) 4, D7 and D10 using Facs Aria cell sorter 

(Becton Dickinson, Franklin Lakes, USA) with a purity >95% as well as peripheral blood MBCs. 

MBCs were sorted using APC-conjugated anti-CD19 mAb and PE-conjugated anti-CD27 (BD 

Biosciences, #555415 and #555441, respectively). Cells produced in the culture system during 

differentiation were sorted using FITC-conjugated anti-CD20, PE-conjugated anti-CD38 and APC-

conjugated anti-CD138 mAbs (Beckman Coulter, Brea, USA, #6602381, #A07779 and #B49219, 

respectively) for D4 prePBs (CD20-CD38-), D7 PBs (CD20-CD38+CD138-), D10 PCs (CD20-

CD38+CD138+). 

Supplementary information concerning methodology are included in Supplementary experiment 

procedures. 

 

Results 

Transcriptional features of stages during normal B to PC differentiation 

The experimental strategy applied to obtain single-cell RNA-seq profiles on the four populations 

generated during B to normal PCD is illustrated in Figure 1A. The uniform manifold approximation 

and projection (UMAP) of the 6,392 cells showed three distinct compartments composed of MBCs, 

PCs and prePB/PB cells (Figure 1B). This projection revealed a highly specific transcriptomic profile 
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for MBCs and PCs, and a strong heterogeneity of the prePB and PB without a clear distinction 

between the two populations. There was no distinction between the replicates of cells generated with 

MBCs from the two healthy donors (Supplemental Figure 1). Each stage exhibited more than 300 

differentially expressed genes that helped clearly distinguish the stages (Figure 1C). When we 

compared each stage with the rest of the dataset, the prePB stage presented the most differentially 

expressed genes with almost 2000 DEGs showing that the most important changes take place during 

this stage. As expecting, B cell transcription factors (TFs) (PAX5, BCL6 and BACH2) were expressed 

in MBCs while the PC TFs (IRF4, PRDM1 and XBP1) were strongly expressed in PCs (Figure 1D). 

The heatmap of the top10 DEGs of the four stages showed dynamic changes during B to normal PCD 

(Figure 1E). We then focused on genes that are differentially regulated during transitions, from MBCs 

to prePB, after B cell activation; from prePB to PB, when cells start to secrete antibody; and from PB 

to PCs. Gene set enrichment analysis of these deregulated genes validated the results previously 

reported using bulk RNAseq analyses (Figure 1F and Supplemental Table I)7,20.  

 

Single-cell chromatin accessibility reveals an over-representation of AP-1 TFs in prePB stage 

To determine the variations in chromatin opening accompanying B to PCD, we applied single-cell 

ATAC-Seq, profiling in total 7,721 individual cells. PrePB, PB and PC stages were clearly separated 

from the MBC stage on the UMAP representation using peaks identified using MACS221 (Figure 2A). 

The number of differentially accessible peaks was higher in prePB (4660) than in other stages (MBC: 

641; PB: 44; PC: 105) (Figure 2B). A fraction of cells at the prePB, PB and PC was characterized by 

very similar ATAC-Seq profiles, highlighting a strong similarity in chromatin structure even if prePB 

and PB cells are very different from PC at the transcriptomic level (Figure 1B). Interestingly, we 

observed a clear-cut chromatin decompaction at the prePB stage (Figure 2C), which is associated with 

a large number of ATAC-Seq peaks (Figure 2B). Moreover, the number of differentially accessible 

regions identified in each stage using sc-ATACseq strongly correlated with the number of 

differentially expressed genes identified using sc-RNAseq (R2 = 0.9949; p-value < 0.001) 

(Supplemental Figure 2). The annotation of these differentially accessible peaks in each stage revealed 

a higher proportion of peaks localized on genes than on distal elements (Figure 2D). Pairwise 

comparisons between MBC and prePB, prePB and PB, and PB versus PC showed that the greatest 

chromatin changes were observed between MBC and prePB (251 open peaks in MBC and 4854 in 

prePB) after B cell activation (Figures 2D-G). We also observed significant changes between prePB 

and PB. Among genes that were differentially expressed at the transcriptome level, 29 genes for MBC, 

170 genes for prePB and 11 genes for PC presented also chromatin remodeling (Figure 2H). These 

results revealed that B cell activation led to major epigenetic and transcriptomic remodeling. Among 

genes that were commonly identified using ATAC-seq and RNA-seq, we identified TFs such as 

FOXP1 and PAX5 for MBC; ARID3A, BATF, BATF3, E2F4, ETS1, IKZF1, IRF2, MYB, SOX4, SPIB, 

SREBF2, STAT3, TFDP1 and ZNF511 for prePB; and finally, PRDM1 for PC (Table I). Motif 
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enrichment analysis using JASPAR and CIS-BP databases revealed a significant enrichment of motifs 

related to all the TF identified in the study and listed in Table I except ZNF511 (Supplemental 

resource 1). BATF and BATF3 had differentially accessible peaks localized on the core gene and on 

distal elements (Figure 2I). Interestingly, differentially accessible peaks characterizing the prePB stage 

were enriched in motifs of BATF3, FOS and BATF belonging to the AP-1 TF family19 (Figure 2J). In 

MBC, we found peaks enriched in KLF4, SPIB and KLF9 TF motifs whereas an enrichment in TCF4, 

ASCL1 and IRF4 motifs was identified in PCs. At the single cell level, the majority of prePB had a 

medium to high expression of AP-1 TF family (BATF, BATF3, FOS, FOSB, FOSL1, FOSL2, JUN and 

JUND)19 (Figure 2K). Moreover, among the differentially accessible peaks in the prePB stage, 38% 

presented BATF3 motif (Figure 2L) corresponding to 1479 genes potentially regulated by BATF3 TF 

(Figure 2M). Among these genes, we identified 140 genes also upregulated in prePB, including 

LDHA, EZH2, CXCR4, BIRC3, MKI67, TRAF1, IL21R, PAX5, CCL5, IKZF1, IRF5 and CCR7. The 

significant overexpression of BATF3 TF was validated at protein level in prePB (supplemental Figure 

3A-B). Since BATF3 TF was previously identified operating in short impulse manner at prePB stage2, 

BATF3 target genes may represent a key transcriptional node involved in PCD.  

 

Integrating sc-RNAseq and sc-ATACseq reveals a more mature subpopulation of prePB 

characterized by an epigenetic profile of PC 

To integrate sc-RNAseq and sc-ATACseq datasets, we used the top 50 differentially expressed genes 

from each stage identified with sc-RNAseq dataset to find anchors and predict cell stage of sc-

ATACseq dataset. For the sc-ATACseq dataset, a gene activity matrix was calculated using the 

number of reads localized within genes. UMAP representation of transferred data showed a good 

superposition of sc-RNAseq and sc-ATACseq datasets, in particular for MBC and PC stages (Figures 

3A-B). Almost a half of prePB from the ATACseq dataset were not predicted as prePB and almost a 

quarter of PB were not predicted as PB (Figure 3C). Interestingly, the remaining prePB were predicted 

as PB and PC and the remaining PB were predicted as PC (Figure 3D), revealing that some prePB and 

PB were characterized by a more mature epigenetic profile. Pairwise comparison between prePB 

predicted as prePB and prePB predicted as PC revealed key marker genes of PC including XBP1, 

FAM46C20, MZB122 or BTG212 (Figure 3E and Supplemental Table II). These data underline that a 

subpopulation of prePBs already undergone epigenetic remodeling related to PC profile. Using RNA-

seq data, the PC cell genes, such as IFI6, associated with open chromatin in prePB are still not 

expressed compared to mature PC (Figure 3F). To validate these results, we performed CHIP-seq of 

the histone marks H3K4me3, H3K27ac and H3K36me3. H3K36me3 is associated with transcriptional 

elongation in the gene body, H3K27ac with active regulatory elements including enhancers and 

promoters, and H3K4me3 with active/promiscuous promoters. The PC genes FAM46C, XBP1, MZB1 

and IFI6 already showed active chromatin marks in prePB cells (Supplemental Figure 4). These results 

suggested that a population of prePB is already committed to generate antibody-secreting cells.  
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Pseudotemporal analysis of prePB and PB subpopulations by single-cell transcriptomic analysis  

Knn-based clustering revealed 7 subpopulations including MBC in cluster 1, prePB in clusters 2 and 3, 

PB in clusters 4 and 5 and PC in clusters 6 and 7 (Figure 4A and Supplemental Figure 5A). 40% of the 

analyzed cells displayed a transcriptional profile associated with S-G2-M stages of the cell cycle 

(Figures 4B-C and Supplemental Figure 5B) represented mainly by prePB and PB6 (Figures 4D-E). 

We selected only prePB and PB associated to S-G2-M stages in order to focus on the processes 

occurring during the transition from prePB to PB, while minimizing biases from cell cycle states 

(Figure 5A). To unravel potential differentiation trajectories and understand the progression between 

stages, cells were computationally ordered along pseudotime computed using Monocle3 (Figures 5B-

C). We focused on genes differentially regulated along this trajectory, in particular genes coding TFs, 

epigenetic regulators and proteins involved in ligand/receptor interactions (Supplemental Table III). 

We identified six groups of deregulated genes: genes downregulated in cluster 1 (early prePB), genes 

downregulated in cluster 2 (mature prePB), genes upregulated in cluster 1, genes upregulated in cluster 

2, genes first downregulated and then upregulated, (impulsed down) and the opposite (impulsed up) 

(Figure 5D). The majority of differentially expressed genes are downregulated (78.8%), and mostly in 

C2 (52.5%) (Figure 5E). Among TFs, BATF3, IRF5, RUNX3, SPIB, PAX5, STAT5A, AHR, JUNB, 

STAT6 and KLF6 were downregulated in the first instance, and PHB2, TFAM, ETS1, TFDP1, YY1, 

E2F4, ZNF146, TP53, MAX and CEBPZ were downregulated in C2 (Figure 5F and Supplemental 

Table IV). Concerning the epigenetic components, AICDA, EZH2, EED, PRMT2 and NCOA4 were 

downregulated during the transition from early to mature prePB stages while PCNA, PRMT1, SET, 

MBD2 and HDAC1 were downregulated during the transition from prePB to PB. The protein 

expression of AID in prePB along with a significant induction of 53BP1 and H2AX, which 

characterize the presence of DNA strand breaks, was validated at protein level (Supplemental Figure 

3). Investigating genes involved in ligand/receptor interactions, we found that IL2RA, IL21R and 

CD40 are downregulated in a first instance after B cell activation (early prePB).  The B cell markers 

CD19, CD22, CD83, CCR7, CCL17 and CCL222,6,7 are downregulated in C1 (Figure 5F, 

Supplemental Figure 6 and Supplemental Table IV). TACI expression was downregulated in C2. PC 

surface markers CD27, CD38, SLAMF7, BCMA and ITGA4 were upregulated in C1 together with IL-

6R, IL-6ST and INSR (Figure 5F, Supplemental Figure 6 and Supplemental Table IV).  

 

Subclustering of prePB and PB stages by single-cell transcriptomic analysis  

The heterogeneity of the prePB stage encouraged us to increase the number of clusters to identity new 

transitional subpopulations of prePB. We obtained 5 clusters composed of 4 clusters of prePB and a 

unique cluster of PB (Figure 6A). Genes deregulated along differentiation process and identified using 

pseudotime analysis (Figure 5F and Supplemental Table IV) were used to order clusters in particular 

clusters 2, 3 and 4, corresponding to more mature prePB (Figure 6B). Pairwise comparisons revealed a 
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larger variation of gene expression observed during the first phases (cluster 1: 684 DEG) and at the 

end (cluster 5: 437 DEG) of the differentiation (Figure 6C and Supplemental Table V). The heatmap 

of the top 50 differentially expressed genes revealed very specific transcriptomic profiles for cluster 1, 

the early prePB, and cluster 5, the PB (Figure 6D). In cluster 1 (early prePB), we found several ligands 

and receptors strongly expressed after B cell activation (Figure 6D). This cluster was also 

characterized by an overexpression of B cell TFs (IRF5, ZFP36L1, SPIB, BATF3, RUNX3 and PAX5) 

(Figure 6E) and AICDA. The cluster 5 (PB) was notably represented by an overexpression of PC 

receptors, such as TNFRSF17 (BCMA), SLAMF7 (CS1), CD27, CD79A and CD38, the PC TF XBP1 

and the PSAP ligand. Mature prePB were divided in 3 clusters (cluster 2: early mature prePB, cluster 

3: transitional mature prePB and cluster 4: mature prePB; Figure 6D) and expressed specific markers 

like the ETS1 and ATF5 TFs overexpressed in early mature prePB (cluster 2). ATF5 is a TF involved 

in the survival pathway CREB3L2-ATF5-MCL117. ETS1 was shown to mediate the transcriptional 

upregulation of MCL1 antiapoptotic factor and recruit AID to DNA sequence from the Igh locus23. 

EGR1 and FOS are expressed later in transitional mature prePB (cluster 3). EGR1 TF participates in 

PCD program24. KLF2 is expressed in mature prePB (clusters 4) and PB (cluster 5) (Figure 6E). KLF2 

is involved in the control of PC homing in the bone marrow by controlling the expression of 7-

integrin25. The clusters of mature prePB were also distinguished by the expression of some genes 

coding ligands and receptors, respectively CALR, HLA-DRB6 and SLC1A5, NCL, CANX for cluster 2, 

GPI, CD70, HLA-DRB6 and TFRC, CXCR4, ENO1, F2R for cluster 3, CCL3 and ITGA4 for cluster 4. 

Gene set enrichment analysis revealed that cluster 1 is enriched in genes regulated by NF-kB and 

STAT5, respectively in response to TNF and IL-2 stimulation (Figure 6F and Supplemental Table VI). 

This cluster was also enriched in genes involved in inflammatory response and p53 pathway. We also 

found genes up-regulated by the activation of the PI3K/Akt/mTOR signaling in cluster 1 and genes 

up-regulated through the activation of mTORC1 complex in all other cluster with a greater enrichment 

in cluster 2. In parallel, in this cluster, we observed an enrichment in genes involved in unfolded 

protein response (UPR) and MYC targets. This gene set was also found in cluster 3 in addition to 

genes involved in oxidative phosphorylation and glycolysis, and targets of E2F TF involved in cell 

cycle. Cluster 5 was enriched in genes involved in UPR in association with protein secretion.  

 

Dual Activation of UPR during prePB and PB transition 

We decided to focus on the dual activation of the endoplasmic reticulum stress observed in the first 

cluster of more mature prePB and later in PB. Pairwise comparison between cluster 2 and clusters 1, 3 

and 4 corresponding to nearest clusters showed that 111 genes were overexpressed in cluster 2, 

including 19 genes (ASNS, SLC7A5, HSPA5, HSP90B1, CALR, HSPA9, SERP1, PSAT1, SSR1, 

EDEM1, XPOT, TARS1, SPCS3, DNAJC3, PDIA6, HYOU1, EIF4EBP1 and HERPUD1) involved in 

UPR (Figures 7A-C and Supplemental Table VII). The cluster 5 overexpressed 179 genes compared to 

the cluster 4 including 10 genes involved in endoplasmic reticulum stress. Among them, 5 genes were 
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commonly found in clusters 2 and 5, whereas 5 genes were specific to the cluster 5 (Figures 7B-C and 

Supplemental Table VII). We also compared the genes upregulated in clusters 2 and 5 to identify other 

genes potentially involved in the UPR (Figure 7D). As reported in mice26, the first activation of UPR, 

in prePB, is associated with an overexpression of genes involved in mTORC1 signaling whereas the 

second activation was associated with a downregulation of mTORC1 signaling genes and an 

overexpression of genes involved in protein secretion (Figures 7E-F). The heatmap of the genes 

involved in the UPR showed a clear distinction between the first activation occurring in early mature 

prePB (cluster 2) and the second activation associated with protein secretion in PB and PCs (Figure 

7G). Early UPR activation was associated to a strong expression of ASNS, SLC7A5, HSPA5, PSAT1, 

XPOT and EIF4EBP1 while the second activation was characterized by a strong expression of 

TMBIM6, HERPUD1, VIMP and XBP1 in PCs. Interestingly, HSPA5 coding a member of the heat 

shock protein (HSP) 70 family named binding immunoglobulin protein (BiP) was only co-expressed 

with one of the three transmembrane endoplasmic reticulum stress sensors in cluster 2 (Figure 7H). 

Interestingly, in cluster 2 we observed an imbalance in the ratio of reads corresponding to 

immunoglobulin light and heavy chains (Figure 7I), with a higher number of reads corresponding to 

IGH compared to IGL (Supplemental Figures 7A-B) that could explain the release of BiP, firstly 

described as an immunoglobulin heavy chain-binding protein27, from its luminal domain at this 

specific moment. In cluster 2, only the Ire1 pathway was activated, known to splice XBP-1 (sXBP-1) 

to produce a highly active TF28. Moreover, the ligase responsible to the ligation of sXBP1 was also co-

expressed in cluster 2 (Supplemental Figure 8A) and pseudotime analysis showed that HSPA5 was 

first expressed, followed by a strong expression of XBP1 (Figure 7J and Supplemental Figure 8B). We 

also detected some sXBP1 reads confirming that the splicing of XBP-1 occurred after the first UPR 

activation in early mature prePB (Supplemental Figure 9). The expression of BiP in prePBs together 

with the induction of XBP1 splicing was validated at the protein level (Supplemental Figure 3). To 

investigate the role of mTORC1-mediated UPR activation in PCD, we used rapamycin, which is an 

acute inhibitor of mTORC1. The drug was added from day 2 to day 4 or from day 2 to day 7 to 

investigate the effect in prePB. When used from day 2 to day 4, rapamycin treatment significantly 

affected the proliferation after activation of MBCs (Supplemental figure 10A). At day 4, 7 and 10, 

global cell counts were significantly decreased by 51%, 75% and 56%, respectively (Supplemental 

Figure 10A)). Rapamycin did not significantly affect cell viability at day 4, 7 and 10 (Supplemental 

Figure 10B). At the cellular level, the percentage of prePBs at day 4 was not affected by rapamycin 

(Supplemental Figure 10C). Conversely, at day 7, the percentage of prePBs was significantly 

increased whereas the percentage of PBs was significantly decreased under mTORC1 inhibition 

compared to control (Supplemental Figure 10C). At day 10, the percentage of mature PCs was 

significantly reduced (Supplemental Figure 10C). When used from day 2 to day 7, rapamycin 

treatment induced the same effects, resulting in inhibition of PCD (Supplemental Figure 10A, B and 
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D). The PI3K inhibitor idelalisib was used as a control. PI3K inhibition significantly affected 

proliferation without significantly affecting PCD (Supplemental Figure 10A-D). 

The second UPR activation starting in cluster 5 is clearly associated to immunoglobulin gene 

expression (Figure 7K). Altogether, these data indicate that prePB already prime the UPR through 

mTORC1 pathway activation in order to prepare for PC function. XBP1 driven UPR activation will 

then be coordinated in PB in order to cope with the increase in antibody synthesis. 

To validate our results, we used the large human tonsil atlas dataset29 (supplemental Figure 11A). 

Among the 209,786 cells constituting the human tonsil atlas dataset, we selected the germinal center B 

cells (GCBC) and PC in S and G2/M phases (Supplemental Figure S11B-D). We identified a 

subpopulation of prePB characterized by low levels of MS4A1 and CD38 together with high 

expression of BATF, BATF3, EZH2, MYB, BLM, AICDA, NSD2 and PCNA (supplemental Figure 

11E-G). These prePB presented a significant enrichment in MYC target genes, E2F target genes, 

mTORC1 signaling, oxidative phosphorylation, glycolysis, inflammatory response (Supplemental 

figure 11I) already identified in the PrePB of our in vitro PCD model (Figure 6F). Taken together, 

these results demonstrate the identification of transitional prePB cells in the human tonsil as 

previously reported6.   

Discussion 

Herein, using sc-RNA-seq and sc-ATAC-seq of an in vitro PCD model, we provide direct evidence for 

epigenetic and transcriptional transition during preplasmablastic stage associated with PC genesis. 

Integration of chromatin accessibility and transcriptomic data revealed a more mature population of 

preplasmablastic cells characterized by open chromatin in PC genes without significant expression. 

Among them, we identified MZB1, FAM46C and XBP1. MZB1 is required for differentiation of PB 

and PC. MZB1 depletion resulted in deregulation of BLIMP1 target genes. Furthermore, MZB1 is 

required for the trafficking and maintenance of bone marrow PCs in mice22. FAM46C plays a role in 

sustaining ER biogenesis and secretory capacity in PC20. XBP1 is essential to support the UPR 

response and adaptation to Ig secretion16. Pseudotemporal analyses identified maturation trajectories in 

prePB with early prePB characterized by downregulation of B cell markers and B cell TFs together 

with upregulation of PC markers, adhesion molecules and growth factor receptors. The transition from 

early prePB to more mature prePB is associated with downregulation of AICDA and of PRC2 complex 

subunits. We previously reported that EZH2 is upregulated in prePB to repress B cell and PC 

transcriptional programs and sustain a transient prePB immature proliferative state that support their 

amplification12. Furthermore, the observed coregulation of AICDA and PRC2 complex genes support 

the reported role of EZH2 in DNA damage response inhibition in order to stimulate the survival of 

activated B cells during AID-mediated somatic hypermutation of Ig genes30. In mature prePB, we 

could identify a significant heterogeneity with sequential early activation of UPR followed by EGR1 

and FOS activation and PC homing control mediated by KLF2. The first wave of the UPR activation 
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is associated with the mTORC1 pathway31,32. This mTORC1 mediated UPR activation was recently 

reported in murine activated B cells driving PC priming26,33 before XBP1 gene expression. Among the 

UPR genes commonly identified in murine activated B cells and human PrePB of our model, XPOT, 

ASNS asparagine synthetase, SLC7A5 amino acid transporter and PSAT1 metabolic enzyme were 

identified. SLC7A5 and ASNS are involved in protein synthesis. HSPA5, HSP90B1 and HSPA9 

genes coding chaperones and facilitator of disulfide bond formation PDIA6 were also induced in 

prePB early UPR wave. Concomitantly, activation of MCL1-mediated PC-survival pathway was 

induced in these prePB with ETS1 and ATF5 overexpression17,23. This pathway is known to be 

activated in light-zone GC B cells that differentiate into PCs18. Transitional prePB overexpress EGR1, 

FOS, CXCR4 and TFRC. c-FOS/AP-1 positively regulates BLIMP1 expression and terminal PCD19,34 

and in malignant PCs35. TFRC coding CD71 is regulated by BLIMP1 in PCD and is known to 

modulate mTORC122. In mice, EGR1 depletion in B cells inhibit PCD in vitro and in vivo36. CXCR4 

overexpression promotes PC migration and maintenance in the BM36. Mature prePB overexpress 

KLF2 that participate in BM PC homing through the control of 7-integrin expression together with 

ITGA4 driving PC motility through VCAM-1 gradient37 and interaction with stromal cells38. In 

human, MBCs are known to induce PCs faster and with reduced input signals compared to other B 

cells39. Our results revealed that a population of prePBs already undergone epigenetic remodeling 

related to PC profile together with UPR activation and are committed to differentiate in PC. We could 

confirm the presence of transitional prePBs in a large human tonsil atlas dataset29. A major challenge 

is to determine the functional contribution of identified epigenetic and transcriptional changes 

involved in PC generation. The human PCD models developed by several groups6,8–11,18 and the data 

generated during their characterization2,3,12,40,41 may be of particular importance for future functional 

validation studies using CRISPR-Cas9 mediated deletion13,42.  

No significant association could be defined between gene expression signature in the transitional 

prePB stages reported and malignant PC counterpart associated with multiple myeloma (MM) cancer. 

Among the differentially expressed genes identified in the five clusters of prePB and PB, high 

expression of ETS143, NCL, SET, TFRC44 and ENO145 belonging to early and transitional mature 

PrePB were associated with significantly poor outcome in MM (Supplemental Figures 12A-B). 

However, high expression of CD4046, CD8247, CD22, CALR, SLAMF748 and CD2749 belonging to 

early PrePB, early mature PrePB and PB were associated to good prognosis (Supplemental Figures 

13A-B).  

In sum, our results illustrate a complex and dynamic pattern of epigenetic and transcriptomic 

modifications in early PC genesis. These results and the supporting data generated provide a resource 

for the identification of molecular circuits that are crucial for early and mature PC biological function 

and survival. These data thus provide critical insights into epigenetic- and transcriptional-mediated 

reprogramming events that sustain PCD. 
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Tables 

Table I: Transcription factors and epigenetic enzymes upregulated and showing a more open 

chromatin state 

 

 MBC prePB PB PC 

TFs FOXP1, PAX5 

ARID3A, BATF, 
BATF3, E2F4, 

ETS1, IKZF1, IRF2, 
MYB, SOX4, SPIB, 
SREBF2, STAT3, 
TFDP1, ZNF511 

- PRDM1 

EEs KDM2B GATAD2A - - 

 

 

Figures Legends 

Figure 1: Single-cell transcriptomics analysis of memory B cells, pre-plasmablasts, plasmablasts 

and plasma cells during B to plasma cell differentiation. (A) Schematic representation of the in 

vitro model of B to PC differentiation. Memory B cells from human peripheral blood were purified 

and cultured with activating molecules, sCD40L and ODN, and cytokines, IL-2, IL-10 and IL-21 to 
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obtain pre-plasmablasts at day 4. Cells were then cultured with IL-2, IL-6, IL-10, IL-15 and IL-21 

cytokines to obtain plasmablasts at day 7. Finally, plasmablasts were cultured with IL-6, IL-15 and 

IFN until day 10 to obtain PCs. Flow cytometry gating of CD19+/CD27+ memory B cells at day 0, 

CD20-/CD38- preplasmablasts at day 4, CD20-/CD38+ plasmablasts at day 7 and CD38+/CD138+ 

PCs at day 10. Schematic representation of the BD Rhapsody single-cell analysis system used in this 

study. MBC, prePB, PB and PC were thawed and tagged with 4 different tags to associate, after 

sequencing, each read to one stage. The four populations (almost 10,000 cells) were pooled and leaded 

onto a cartridge composed of more than 200,000 wells. Unique barcoded beads were added in excess 

and after washing, each cell was associated to a unique bead, allowing the association of each read to a 

unique cell. Then, cells were lysed and mRNA was hybridized on the beads. To finish, beads were 

recovered to synthetize cDNA and amplify libraries prior to sequence. (B) UMAP representation of 

the four stages identified using tags and demultiplexing. (C) Number of positive differentially 

expressed genes identified for the four stages using pairwise comparisons (One stage versus All other 

cells). (D) mRNA expression of B cell transcription factors: BACH2, BCL6 and PX5; and PC 

transcription factors: IRF4, PRDM1 and XBP1. (E) Heatmap of the top 10 genes up-regulated of each 

stage. (F) Gene ontology enrichment analysis showing both pathways enriched in up-regulated and 

down-regulated genes during transitions: from MBC to prePB, from prePB to PB and from PB to PC. 

Figure 2: Single-cell chromatin accessibility of memory B cells, pre-plasmablasts, plasmablasts 

and plasma cells during B to plasma cell differentiation. (A) UMAP representation of the four 

stages analyzed separately and then merged together. Peaks detected with MACS2 peakcalling were 

used for UMAP representation. (B) Number of differentially accessible peaks identified for the four 

stages using pairwise comparisons (One stage versus All other cells). (C) Cells were fixed with 4% 

PFA for 10 minutes at different time points: MBCs (Day 0), PrePBs (Day 4), PBs (Day 7) and PCs 

(Day 10). Immunofluorescence to detect H3K27me3 levels (green) was performed with an anti-

H3K27me3 antibody. DNA was stained with DAPI (red). Scale bar = 10 μm. (D) Proportion of peaks 

localized on genes (in blue) and distal elements (in green) for each stage. (E, F, G) Volcano plots of 

differentially accessible peaks identified during transitions: from MBC to prePB, from prePB to PB 

and from PB to PC, respectively. Peaks identified as significantly accessible were colored in blue (P-

value < 0.05 and log2(Fold Change) > 0.25). (H) Venn diagrams representing genes that were up-

regulated in RNA-seq dataset (in blue) and/or associated with more open chromatin in ATAC-seq 

dataset (in green). (I) Peak tracks of BATF and BATF3 revealing differentially accessible peaks on 

BATF and BATF3 genes and on distal elements. (J) Transcription factor motif enrichment of 

differentially accessible peaks for each stage. (K) mRNA expression of transcription factors belonging 

to the AP-1 family in the four stages using the RNA-seq dataset. (L) Proportion of differentially 

accessible peaks in the prePB stage enriched in BATF3 motif. (M) Venn diagram of the number of 

genes up-regulated in the prePB stage identified using the RNA-seq dataset and the number of genes 
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associated with a more open chromatin enriched in BATF3 motif identified using ATAC-seq dataset. 

Common genes represented potential BATF3 targets.  

Figure 3: Integration of sc-RNAseq and sc-ATACseq datasets. (A, B) UMAP representation of sc-

RNAseq and sc-ATACseq merged dataset. First, using the top50 differentially expressed genes of 

each stage from the sc-RNAseq dataset and the number of reads within genes of interest from the sc-

ATACseq dataset, a gene activity matrix was calculated for sc-ATACseq dataseq to find and set 

anchors. Gene expression values of sc-ATACseq dataset were predicted using the global gene 

expression values of sc-RNAseq dataset and identified anchors. Both sc-RNAseq and sc-ATACseq 

gene expression matrices were finally merged. (C) Number of cells predicted using the gene activity 

matrix versus actual number of observed cells at each stage (MBC, prePB, PB and PC). (D) 

Percentage of prePB and PB predicted as MBC, prePB, PB and PC. (E) Volcano plots showing 

differentially expressed genes (using the gene activity matrix) between the prePB predicted as prePB 

and the prePB predicted as PC. Genes identified as significantly differentially expressed were colored 

in blue (P-value < 0.05 and log2(Fold Change) > 0.25). (F) IFI6 expression observed in MBC, prePB, 

PB and PC using respectively sc-RNAseq (above) and sc-ATACseq (below) datasets. High and low 

expression were represented in dark blue and in yellow, respectively. 

Figure 4: Identification of subpopulations within the different stage of B to plasma cell 

differentiation. (A) Seurat k-nearest neighbors clustering identified 7 clusters: 1 cluster 

corresponding to MBC and 2 clusters for each stage of prePB, PB and PC. (B) Identification of 

quiescent cells (G1) and proliferative cells (S and G2M) using the Seurat cell-cycle scoring. (C) 

mRNA expression of CDC20, CDK1, MKI67 and PCNA involved in cell cycle. High and low 

expression were represented in dark blue and in yellow, respectively. (D) Cell cycle distribution of 

each stage. (E) Heatmap displaying the average expression of selected genes in clusters identified in 

A.  

Figure 5: Pseudotemporal analysis of prePB and PB subpopulations. (A) UMAP representation of 

proliferative prePB and PB. (B) UMAP projection colored by normalized pseudotime analysis. (C) 

Clusters identified using the monocle package and used to define trajectories. (D) Temporal gene 

expression patterns from prePB to PB. (E) Proportion of genes and genes coding transcription factors 

(TFs), epigenetic enzymes (EEs) and proteins involved in ligand/receptor interactions deregulated 

along the trajectory according to the expression patterns defined in D. (F) Plots of the expression of 

top differentially expressed genes coding for TFs, EEs, ligands and receptors in function of 

pseudotime. 

Figure 6: Identification of new subpopulations of prePB and PB stages. (A) Seurat k-nearest 

neighbors clustering identified 5 clusters, including 4 clusters for prePB and 1 cluster for PB. (B) 

Violin plots representing the expression of top marker genes identified using the pseudotime analysis 

for each cluster. (C) Number of positive differentially expressed genes identified in the 5 clusters 

using pairwise comparisons (One cluster versus All other cells). (D) The heatmap showed the top 50 
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genes up-regulated in each cluster. Keys genes coding TFs, EEs, ligands and receptors were indicated 

and colored in grey, red, green and blue, respectively. (E) Expression levels of transcription factors 

identified in D. High and low expression were represented in dark blue and in yellow, respectively. (F) 

Gene set enrichment analysis of the whole genes up-regulated in each cluster. 

Figure 7: Dual Activation of UPR during prePB and PB stages. (A, B) Volcano plots showing 

differentially expressed genes between the cluster 2 (C2) versus clusters 1, 3 et 4 (C1-3-4) and cluster 

5 (C5) versus cluster 4 (C4), respectively. Genes identified as significantly differentially expressed 

were colored in blue (P-value < 0.05 and log2(Fold Change) > 0.25). (C) Venn diagram representing 

genes involved in UPR and up-regulated in C2 and/or C5. (D) Venn diagram of genes up-regulated in 

C2 and/or C5. Common genes were potentially involved in UPR. (E, F) Gene set enrichment analysis 

showing both pathways enriched in up-regulated and down-regulated genes in C2 and C5 compared to 

C1-3-4 and C4, respectively. (G) Heatmap displaying the expression of genes involved in UPR and 

up-regulated in C2 and/or C5 for each cluster of proliferating prePB and PB, as well as quiescent 

MBC, PB and PC. (H) Visualization of cells simultaneously co-expressing HSPA5 (in green) and 

ERN1, EIF2AK3 or ATF6 (in red) genes. Yellow dots correspond to the co-expression of the two 

genes. (I) Boxplots representing the log2 ratio of IGL and IGH read counts per cell in each cluster. (J) 

Plots of HSPA5 and XBP1 mRNA expression in function of pseudotime. (K) Violin plots of the main 

immunoglobulin genes expressed in PCs for each cluster of proliferating prePB and PB, as well as 

quiescent MBC, PB and PC. 
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Supplemental Figure 1. UMAP projection of sc-RNAseq of the B to plasma cell differentiation using 
memory B cells from two healthy donors. This representation was obtained after batch effect 
correction. (A) UMAP projection was colored according to the replicate. (B) UMAP projection was 
according to the stage and the replicate.
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Supplemental Figure 2. Correlation between the number of differentially expressed genes identified 
using sc-RNAseq dataset and the number of differentially accessible peaks identified using sc-
ATACseq dataset. Coefficient of determination R2 represents the square of the Pearson correlation 
coefficient (r) (Pearson correlation test).  
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Supplemental Figure 3. Cell populations were FACS sorted at each time point (MBC: Day 0, prePB: 
Day 4; PB: Day 7; PC: Day 10) and the indicated proteins were analyzed by western blotting with 
specific antibodies. Histone H3 was used as loading control. Results show one representative out of 3 
independent experiments (A). Cells were FACS sorted at each time point as explained before, fixed 
with 4% PFA-PBS (10 min) and immunofluorescence was performed to detect BATF3 and BiP 
proteins. DNA was stained with DAPI. Scale bars: 10 μm. Results show one representative out of 3 
independent experiments (B). Quantification of 53BP1 foci in MBC, PrePB and PB.**** p value < 
0.0001.
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Supplemental Figure 4. Gene tracks of H3K4me3, H3K27ac and H3K36me3 ChIP-seq occupancy 
near PC genes in MBC, prePB, PB and PC stages. PC genes already demonstrated an enrichment at 
enhancer region (H3K27ac mark) for FAM46C (A), XBP1 (B) and IFI6 (C) and in the gene body 
(H3K36me3 mark) of MZB1 (D) in prePB stage. The x axis shows the genomic position. The y axis 
shows signal coverage of ChIP-seq occupancy in units of reads per bin mapped reads.
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Supplemental Figure 5. Distribution of cells. (A) Distribution of MBC, prePB, PB and PC in each
cluster identified in Figure 4A. (B) Percentage of quiescent (G1) and proliferative (S and G2M) cells
among all cells.
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Supplemental Figure 6. Proportion of genes coding ligands and receptors deregulated along the 
trajectory according to the expression patterns defined in Figure 5D. 
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Supplemental Figure 7. Boxplots representing the log2 of read count of IGH (A) and IGL (B) genes 
per cell in each cluster. 
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Supplemental Figure 9. UMAP projection of the whole cells (quiescent and proliferative) indicating 
cells from the cluster 2 (in blue) and cells expressing the spliced form of XBP1 (in red).
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Supplemental Figure 10. Cells were treated with rapamycin (1 μM) or idelalisib (10 μM) from day 
2 to day 4 (left charts) or from day 2 to day 7 (right charts). (A) Proliferation rate and the 
cumulative growth curve were calculated at each time point. (B) Viability was calculated as the 
percentage of live cells versus total cells in each condition. Results show the mean + SD of 4 
independent experiments. Statistical significance was calculated using a Student’s t-test for paired 
samples. *: p-value < 0.05; **: p-value <0.01. At each time point, cell populations were marked 
with specific fluorescent antibodies, quantified by flow cytometry and represented as percentage of 
total cells. prePB: CD20- CD38- CD138-; PB: CD20- CD38+ CD138-; PC: CD20- CD38+ 
CD138+. Results show the mean + SD of 4 independent experiments. Statistical significance was 
calculated using a Student’s t-test for paired samples. *: p-value < 0.05; **: p-value <0.01; ***: p-
value <0.001; ****: p-value < 0.0001. 



Supplemental Figure 11. Identification of prePB cells in the public Tonsil Atlas dataset. (A) The 
UMAP representation showed the 209,786 cells composing the Tonsil Atlas dataset. (B) Then, we 
filtered in 92,218 GCBC and 14,256 PC cells from the dataset and (C) applied the Seurat cell-cycle 
scoring to identify quiescent cells (G1) and proliferative cells (S and G2M). (D) We filtered out 
quiescent cells to keep proliferative GCBC and PC cells (n=56,990). (E) mRNA expression of markers 
with high (BATF3, BATF, EZH2, MYB, BLM, AICDA, NSD2 and PCNA) and low (CD38, MS4A1, 
SDC1 and XBP1) expression in prePB. (F) Clustering of proliferative GCBC and PC cells to isolate 
prePB (SDC1-, CD38-, XBP1-, CD20-, BATF+, BATF3+, PCNA+). (G) Cells with high expression of 
BATF3 from the cluster 7 were identified as prePB (n=143). (H) Volcano plots showing differentially 
expressed genes between the identified prePB versus the other cells. (I) Gene set enrichment analysis 
of the whole genes up-regulated in the identified prePB.
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Supplemental Figure 12. Key marker genes identified in prePB and PB stages associated with bad 
prognosis in multiple myeloma patients. (A) The heatmap showed the top 50 genes up-regulated in 
each cluster. Genes associated to bad prognosis in the CoMMpass cohort (n = 674) were indicated and 
were colored in grey, red, green and blue if they code for TFs, EEs, ligands and receptors, 
respectively. (B) Kaplan-Meier curves of genes identified in A in CoMMpass cohort. Red curves 
represent high-risk group associated with high gene expression and green curves correspond to low-
risk group associated with low gene expression.
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Supplemental Figure 13. Key marker genes identified in prePB and PB stages associated with good 
prognosis in multiple myeloma patients. (A) The heatmap showed the top 50 genes up-regulated in 
each cluster. Genes associated to good prognosis in the CoMMpass cohort (n = 674) were indicated 
and were colored in grey, red, green and blue if they code for TFs, EEs, ligands and receptors, 
respectively. (B) Kaplan-Meier curves of genes identified in A in CoMMpass cohort. Red curves 
represent low-risk group associated with high gene expression and green curves correspond to high-
risk group associated with low gene expression.
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